Matlab Cheat Sheet

Arrays/lists of numbers

x=[1 2 3]	x is an array with 3 entries: $1, 2, and 3$.
x=1:10:4	The entry of x runs from 1 to 10, increased by 4 each time.
x=1:10	The entry of x runs from 1 to 10, increased by 1 each time.
x=linspace(1,10,19)	There are 19 equally spaced values in x running from 1 to 10.
x=zeros(1,10)	x is a $1*10$ matrix, with all entries being zero.
x=ones(1,10)	x is a $1*10$ matrix, with all entries being one.

Random number

x=randi(10)	\mathbf{x} is a random integer between 1 and 10.
x=rand	x is a random number between 0 and 1.

Arithmetic

We assume x is an array in the following examples.x=x+2Every entry of x is added by 2.x=x-2Every entry of x is subtracted by 2.x=x.*2Every entry of x is multiplied by 2.x=x./2Every entry of x is divided by 2.x=x.^2Every entry of x is squared.x(2)=10The second entry of x is changed to 10.

Summation

We assume x is	an array in the following examples.
y=sum(x)	y is a number, the summation of every entry of x.
y=cumsum(x)	y is an array (with the same size as x), each entry of which
	is the partial sum of entries of x.
D 1	

For example,

x=[1 2 3]
y=sum(x)
z=cumsum(x)

gives y=6 and z=[1 3 6].

Plot

We assume x and y are arrays in the following examples. plot(x,y,'ro') Plot the points (x_i, y_i) with red circles, where x_i runs through the entries of x, and y_i runs through the entries of y.

Plot setting

In the code plot(x,y,'ro'), r is the color specifier, while o is the marker specifier.

Color specifier		Marker specifier	
r	Red	+	Plus sign
g	Green	0	Circle
b	Blue		Point
У	Yello	x	Cross
k	Black	S	Square

Hold on

hold on $\$ Hold the current graph, and put subsequent plots on the same set of axes. hold off $\$ Do not hold on.

For

The standard structure of for loop is

```
for i=1:10
    ...(some commmands)...
end
```

In this code, i is running from 1 to 10, increased by 1 each time. The commands would be executed ten times, corresponding to i=1, 2,..., 10. For example,

```
x=0
for i=1:10
x=x+i;
end
x
gives x=1+2+...+10=55.
Another example is a nested structure.
x=0
for i=1:10
for j=1:3
x=x+(i+j);
end
end
x
```

gives x=(2+3+4)+(3+4+5)+(4+5+6)+...+(11+12+13)=225.

\mathbf{If}

The structure of $\verb"if"$ is

if a>b ...(some commmands)...

end

In this code, the condition is a>b. Only when the condition is satisfied (a>b) will the commands be executed. For instance,

```
x=0
for i=1:10
    if i>5
        x=x+i;
    end
end
```

x

gives x=6+7+8+9+10=40.

Copyright © 2019 Calculus 2 Labs Team